Influence of the copper nanoparticle-ceftriaxone conjugate on hemodynamic indices in rabbits in an acute experiment

Authors

  • P. V. Simonov

DOI:

https://doi.org/10.14739/2310-1210.2015.4.50300

Keywords:

Metal Nanoparticles, Copper, Ceftriaxone, Hemodynamics, Safety

Abstract

An implementation of series of preclinical studies of the copper nanoparticle-ceftriaxone conjugate as a new medication with a broad spectrum of antimicrobial action for treatment of infections, particularly caused by resistant strains, is of great importance nowadays.

The aim of current research was to determinate effect of studied substance on cardiovascular function in animals when administered intravenously in an acute experiment.

Methods and results. The study was carried out on 8 Chinchilla rabbits with monitoring of systemic and cardiac hemodynamic indices with ‘Hewlett Packard’ Hp Viridia Component Monitoring System. It was shown that the copper nanoparticle-ceftriaxone conjugate at doses of 10–200 mg/kg did not have a negative impact on the heart rate, maximum left ventricular pressure, systolic, diastolic blood pressure, the pulse pressure, and the mean arterial pressure.

Conclusion. These findings attest to the fact that the copper nanoparticle-ceftriaxone conjugate may be considered a biosafe substance in the terms of an influence on systemic and cardiac hemodynamic indices when administered intravenously to rabbits in an acute experiment.

References

Llor, C., & Bjerrum, L. (2014). Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Therapeutic Advances in Drug Safety, 5(6), 229–241. doi: 10.1177/2042098614554919.

Chekman, І. S., Ulberg, Z. R., Malanchuk, V. O., Gorchakova, N. O., Zupanets, І. A., Shatorna, V. F., et al. (2012). Nanonauka, nanobіologіia, nanofarmatsіia [Nanoscience, nanobiology, nanopharmacy]. Kyiv: Polіgraf Plyus. [inUkrainian].

Ingle, A. P., Duran, N., & Rai, M. (2014). Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review. Applied Microbiology and Biotechnology, 98(3), 1001–1009. doi: 10.1007/s00253-013-5422-8.

Mehta, K. C., Dargad, R. R., Borade, D. M., & Swami, O. C. (2014). Burden of antibiotic resistance in common infectious diseases: Role of antibiotic combination therapy. Journal of Clinical and Diagnostic Research, 8(6), ME05–ME08. doi: 10.7860/JCDR/2014/8778.4489.

Ali, A. E. (2011). Synthesis, spectral, thermal and antimicrobial studies of some new tri metallic biologically active ceftriaxone complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78(1), 224–230. doi: 10.1016/j.saa.2010.09.025.

Allahverdiyev, A. M., Kon, K. V., Abamor, E. S., Bagirova, M., & Rafailovich, M. (2011). Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Review of Anti-infective Therapy, 9(11), 1035–1052. doi: 10.1586/eri.11.121.

Privalova, L. I., Katsnelson, B. A., Loginova, N. V., Gurvich, V. B., Shur, V. Y., Valamina, I. E., et al. (2014). Subchronic toxicity of copper oxide nanoparticles and its attenuation with the help of a combination of bioprotectors. International Journal of Molecular Sciences, 15(7), 12379–12406. doi: 10.3390/ijms150712379.

Wang, Y. C., Hu, C. W., Liu, M. Y., Jiang, H. C., Huo, R., & Dong, D. L. (2013). Copper induces vasorelaxation and antagonizes noradrenaline-induced vasoconstriction in rat mesenteric artery. Cellular Physiology and Biochemistry, 32(5), 1247–1254. doi: 10.1159/000354523.

Lamb, H. M., Ormrod, D., Scott, L. J., & Figgitt, D. P. (2002). Ceftriaxone: An update of its use in the management of community-acquired and nosocomial infections. Drugs, 62(7), 1041–1089.

How to Cite

1.
Simonov PV. Influence of the copper nanoparticle-ceftriaxone conjugate on hemodynamic indices in rabbits in an acute experiment. Zaporozhye Medical Journal [Internet]. 2015Sep.16 [cited 2024Nov.5];17(4). Available from: http://zmj.zsmu.edu.ua/article/view/50300

Issue

Section

Original research